
Ensemble Approach to Failure-Resistant Password-Based Key Derivation Functions
Jason Hennessey, Sarah Scheffler, Mayank Varia

{henn, sscheff, varia}@bu.eduDepartment of Computer Science bu.edu/cs

Motivation

Hardware attacks getting easier

2017
$2K ASIC

2013
$1M ASIC

2017
CPU

2017
$1M ASIC

2017
GPU

• PBKDF2[13] (most widespread PBKDF) relies on
simple, repeated hash invocations to increase
password key derivation time for attackers

• Bitcoin provided a financial incentive to create high
throughput, efficient hashing ASICs

• Passwords can now be guessed 106 to 1010 times
faster using ASICs than CPUs of similar price

• State-of-the-art PBKDFs (e.g. scrypt[8], argon2[4])
improve by utilizing memory, but are still vulnerable
to ASIC attacks [1]

Goal

Minimize efficiency gains of specialized hardware vs.
honest user’s device for key derivation

Properties

•Resource consumption model - plugins
consume user-specified resources (e.g. memory,
CPU, disk)

•Failure resistance - Hash construct guarantees
security as good as strongest hash; failures in
resource-consuming plugins limited to a single round

•Optimization for specific platform - Plugin
and sponge construction designed for anti-pipelining
and anti-parallelism

Acknowledgements

We gratefully acknowledge Ethan Heilman’s contributions both to the initial concept and refinements, as
well as support received from: NSF Grant No. 1414119, Clare Boothe Luce Graduate Research Fellowship,
MassTech Collaborative Research Matching Grant Program and commercial partners of the Massachusetts
Open Cloud.

Construction

PBKDF Definition

PBKDF

password

salt

key length

key

1

Example Plugins

Resource Plugin
Memory scrypt[8], argon2d[4]
CPU Hash functions

Chip/rate limit TPM
Cache argon2d[4]

Network Pythia[6]
· · · · · ·

H

Plugin

H

Plugin

H · · · H

Plugin

H

Key

H

Key

· · ·

Plugin-running phase
Plugins believed to be side-
channel vulnerable are run last

Key output phase

1

H

scheduler

����

plugin fi

resources

plugin list plugin list excluding fi

H

choice of fi

plugin input from hash

hash input from plugin

hash input from previous output

private hash state

1

Example Hash Functions

Hash Adopted by
SHA2-512 [11] US/NIST + EU/NESSIE
Whirlpool [9] Global/ISO + EU/NESSIE
SHA3-512 [12] US/NIST
Steebog-512 [5] Russia/FAPSI
BLAKE2-512 [2] Open source projects

ChaCha20/Poly1305 [7] Open source projects
AES/Poly1305 [3] Open source projects

MD6 [10] Open source projects
· · · · · ·

H

h1k1

h2k2

h3k3

h4k4

k1

k2

k3

k4

F (F (h1k1
, h2k2

), F (h3k3
, h4k4

))

1

References

[1] Asic Litecoin/Scrypt Miner Wolf V1 1024 Mh/s (1GH).
https://shop.bitmain.com/antminer_l3_litecoin_asic_scrypt_miner.htm.

[2] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. BLAKE2: Simpler, smaller, fast
as MD5. In M. J. Jacobson Jr., M. E. Locasto, P. Mohassel, and R. Safavi-Naini, editors, ACNS 13:
11th International Conference on Applied Cryptography and Network Security, volume 7954 of
Lecture Notes in Computer Science, pages 119–135, Banff, AB, Canada, June 25–28, 2013. Springer,
Heidelberg, Germany.

[3] D. J. Bernstein. The poly1305-AES message-authentication code. In H. Gilbert and H. Handschuh,
editors, Fast Software Encryption – FSE 2005, volume 3557 of Lecture Notes in Computer Science,
pages 32–49, Paris, France, Feb. 21–23, 2005. Springer, Heidelberg, Germany.

[4] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: new generation of memory-hard functions for
password hashing and other applications. In Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on, pages 292–302. IEEE, 2016.

[5] V. Dolmatov and A. Degtyarev. GOST R 34.11-2012: Hash Function. RFC 6986 (Informational),
Aug. 2013.

[6] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, T. Ristenpart, and C. Tech. The pythia prf service.
In USENIX Security Symposium, pages 547–562, 2015.

[7] A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson, and S. Josefsson.
ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS). RFC 7905 (Proposed
Standard), June 2016.

[8] C. Percival and S. Josefsson. The scrypt password-based key derivation function. Technical report,
2016.

[9] V. Rijmen and P. S. L. M. Barreto. The WHIRLPOOL hash function.

[10] R. L. Rivest, B. Agre, D. V. Bailey, C. Crutchfield, Y. Dodis, K. E. Fleming, A. Khan,
J. Krishnamurthy, Y. Lin, L. Reyzin, et al. The md6 hash function–a proposal to nist for sha-3.
Submission to NIST, 2(3), 2008.

[11] Secure hash standard. National Institute of Standards and Technology, NIST FIPS PUB 180-2, U.S.
Department of Commerce, Aug. 2002.

[12] Secure hash standard. National Institute of Standards and Technology, NIST FIPS PUB 180-4, U.S.
Department of Commerce, Aug. 2015.

[13] M. S. Turan, E. Barker, W. Burr, and L. Chen. Recommendation for password-based key derivation.
NIST special publication, 800:132, 2010.

@BUCompSci

https://shop.bitmain.com/antminer_l3_litecoin_asic_scrypt_miner.htm

