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• PBKDF2[13] (most widespread PBKDF) relies on
simple, repeated hash invocations to increase
password key derivation time for attackers

• Bitcoin provided a financial incentive to create high
throughput, efficient hashing ASICs

• Passwords can now be guessed 106 to 1010 times
faster using ASICs than CPUs of similar price

• State-of-the-art PBKDFs (e.g. scrypt[8], argon2[4])
improve by utilizing memory, but are still vulnerable
to ASIC attacks [1]

Goal

Minimize efficiency gains of specialized hardware vs.
honest user’s device for key derivation

Properties

•Resource consumption model - plugins
consume user-specified resources (e.g. memory,
CPU, disk)

•Failure resistance - Hash construct guarantees
security as good as strongest hash; failures in
resource-consuming plugins limited to a single round

•Optimization for specific platform - Plugin
and sponge construction designed for anti-pipelining
and anti-parallelism
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Example Plugins

Resource Plugin
Memory scrypt[8], argon2d[4]
CPU Hash functions

Chip/rate limit TPM
Cache argon2d[4]

Network Pythia[6]
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Plugin-running phase
Plugins believed to be side-
channel vulnerable are run last

Key output phase
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Example Hash Functions

Hash Adopted by
SHA2-512 [11] US/NIST + EU/NESSIE
Whirlpool [9] Global/ISO + EU/NESSIE
SHA3-512 [12] US/NIST
Steebog-512 [5] Russia/FAPSI
BLAKE2-512 [2] Open source projects

ChaCha20/Poly1305 [7] Open source projects
AES/Poly1305 [3] Open source projects

MD6 [10] Open source projects
· · · · · ·
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